3.499 \(\int \frac{x^2}{(a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=43 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{3/2}}-\frac{x}{b \sqrt{a+b x^2}} \]

[Out]

-(x/(b*Sqrt[a + b*x^2])) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0131784, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {288, 217, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{3/2}}-\frac{x}{b \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*x^2)^(3/2),x]

[Out]

-(x/(b*Sqrt[a + b*x^2])) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(3/2)

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+b x^2\right )^{3/2}} \, dx &=-\frac{x}{b \sqrt{a+b x^2}}+\frac{\int \frac{1}{\sqrt{a+b x^2}} \, dx}{b}\\ &=-\frac{x}{b \sqrt{a+b x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{b}\\ &=-\frac{x}{b \sqrt{a+b x^2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{b^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0512126, size = 59, normalized size = 1.37 \[ \frac{\sqrt{a} \sqrt{\frac{b x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )-\sqrt{b} x}{b^{3/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + b*x^2)^(3/2),x]

[Out]

(-(Sqrt[b]*x) + Sqrt[a]*Sqrt[1 + (b*x^2)/a]*ArcSinh[(Sqrt[b]*x)/Sqrt[a]])/(b^(3/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 37, normalized size = 0.9 \begin{align*} -{\frac{x}{b}{\frac{1}{\sqrt{b{x}^{2}+a}}}}+{\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){b}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^2+a)^(3/2),x)

[Out]

-x/b/(b*x^2+a)^(1/2)+1/b^(3/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.32611, size = 300, normalized size = 6.98 \begin{align*} \left [-\frac{2 \, \sqrt{b x^{2} + a} b x -{\left (b x^{2} + a\right )} \sqrt{b} \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right )}{2 \,{\left (b^{3} x^{2} + a b^{2}\right )}}, -\frac{\sqrt{b x^{2} + a} b x +{\left (b x^{2} + a\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right )}{b^{3} x^{2} + a b^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*(2*sqrt(b*x^2 + a)*b*x - (b*x^2 + a)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a))/(b^3*x^2 +
 a*b^2), -(sqrt(b*x^2 + a)*b*x + (b*x^2 + a)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)))/(b^3*x^2 + a*b^2)]

________________________________________________________________________________________

Sympy [A]  time = 1.6524, size = 37, normalized size = 0.86 \begin{align*} \frac{\operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{b^{\frac{3}{2}}} - \frac{x}{\sqrt{a} b \sqrt{1 + \frac{b x^{2}}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**2+a)**(3/2),x)

[Out]

asinh(sqrt(b)*x/sqrt(a))/b**(3/2) - x/(sqrt(a)*b*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]  time = 1.86196, size = 53, normalized size = 1.23 \begin{align*} -\frac{x}{\sqrt{b x^{2} + a} b} - \frac{\log \left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right )}{b^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

-x/(sqrt(b*x^2 + a)*b) - log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(3/2)